We're thrilled to announce the return of GamesBeat Next, hosted in San Francisco this October, where we will explore the theme of "Playing the Edge." Apply to speak here and learn more about sponsorship opportunities here. At the event, we will also announce 25 top game startups as the 2024 Game Changers. Apply or nominate today!


Waymo CTO Dmitri Dolgov thinks 5G and next-generation cellular networks will be “an enabler” of the company’s autonomous car fleets, he told reporters this morning during a meeting at Waymo’s headquarters in Mountain View, California.

“I think it’ll help in terms of communication [and with] latency and bandwidth,” he said, noting that Waymo’s driverless Chrysler Pacifica minivans wirelessly exchange information about hazards and route changes via dual modems. “[Our cars] still have to rely on onboard computation for anything that is safety-critical, but … [5G] will be an accelerator.”

“5G” encompasses a host of evolving technologies, as VentureBeat’s intrepid 5G correspondent Jeremy Horowitz laid out in an explainer article last year. A small sampling includes new cellular antenna and modems, small cells, carrier aggregation (which enables radios to tune to overlapping channels simultaneously), Massive MIMO (which coordinate tens of antennas at a time), and QAM (which packs additional data signals into radio waves).

Moreover, there’s not just one “type” of 5G. Millimeter wave — often abbreviated “mmWave” — are ultra-high frequency radio waves in the 24GHz to 300GHz range that reliably transmit lots of information over relatively short distances (around 1,000 feet). They’re separate and distinct from sub-6Hz or 600Mhz and 2.5GHz, which are able to travel further than mmWave but offer only a fraction of the bandwidth.

Event

VB Transform 2023 On-Demand

Did you miss a session from VB Transform 2023? Register to access the on-demand library for all of our featured sessions.

 

Register Now

Still, no matter the frequency and techniques in play, 5G networks hope to achieve latency in the sub-10ms to sub-1ms range, compared with 4G’s 20-70ms of latency. As for bandwidth, the 24GHz to 300GHz range theoretically offers around 6 gigabits per second.

So what does all that have to do with self-driving cars? The low latency could be a boon for decision-making in traffic scenarios requiring real-time communication over a network. And the bandwidth improvements are a natural fit for such cars, which record an estimated 1.4 terabytes to 19 terabytes of sensor data per hour.

Dean Bushey, general manager of self-driving car startup Voyage, explained the benefits in a recent interview with the Hill: “Right now, anything over a hundred milliseconds of latency is going to cause our car to disrupt. So anytime we can get lower latency, higher bandwidth … that’s where 5G comes in. Now we’ve solved the latency problem associated with getting commands, and video, back and forth between the car and the command station.”

Critics might argue that 5G is a long way from ubiquity, but so is Waymo One, Waymo’s commercial ride-hailing service, which hasn’t yet expanded beyond Phoenix, Arizona. And it’s worth noting that in the case of 5G, that’s beginning to change: Early networks and devices have already launched, and by the end of this year you’ll be able to get a 5G connection somewhere on almost every continent.

By the time Waymo One fleets are ferrying passengers through cities around the country, 5G will likely be closer to the rule than the exception. That seems to be what Waymo is anticipating, at least.

VentureBeat's mission is to be a digital town square for technical decision-makers to gain knowledge about transformative enterprise technology and transact. Discover our Briefings.